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Abstract

The cognitive mechanics of human decision-making is affected by a large set of high-level processes.

Some of these processes, called cognitive biases, are often regarded as failures, since they prescribe

behavior which is not deemed as rational. Furthermore, in social settings, humans employ a process

known as theory of mind which enables them to create and manage a dynamic model of the mental

states of others, allowing for the prediction of future actions to better inform current behavior. Can

cognitive biases promote coordination? Can increasingly sophisticated levels of theory of mind pro-

mote coordination? In this thesis, we answer these questions by showing how coordination among

agents measuring value using the prescriptive Expected Utility Theory (EUT) differs from the coordina-

tion among agents measuring value using the descriptive Cumulative Prospect Theory (CPT), in two

experimental settings: a normal-form stag hunt game allows us to study how coordination differs when

agents use EUT and CPT as theories of value, while a Markov game of stag hunt focuses on studying the

effects of increasingly sophisticated policies among both EUT- and CPT-agents, using the recursive the-

ory of mind level-k model that captures bounded rationality. We show that CPT-agents are better able to

coordinate in both experiments, compared to EUT-agents. Furthermore, in the Markov stag hunt, while

coordination with both EUT and CPT stand to gain from increasingly sophisticated policies, CPT-agents

do not require as much sophistication as EUT-agents do to coordinate to the same extent. We can thus

conclude that, while some of these cognitive biases are viewed as failures in individual decision-making,

they actually make social interaction easier.

Keywords

Coordination; Cognitive Bias; Theory of Mind; Expected Utility Theory; Cumulative Prospect Theory;

Level-k; Bounded Rationality.
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Resumo

Os mecanismos cognitivos do processo de decisão humano é afetada por uma grande quantidade

de processos de alto-nı́vel. Alguns destes processos, chamados tendências cognitivas, são muitas

vezes vistos como falhas, visto que levam a comportamentos que não é considerado racional. Para

além disso, em cenários sociais, os humanos usam um processo conhecido como teoria da mente que

os permite criar e gerir um modelo dinâmico de estados mentais de outros, permitindo a previsão de

ações futuras para melhor informar comportamentos presentes. Podem as tendencias cognitivas ajudar

na coordenação? Podem nı́veis mais sofisticados de teoria da mente ajudar na coordinação? Nesta

tese, respondemos a estas perguntas mostrando como a coordinação entre agentes que medem os

valores das suas ações usando a prescritiva teoria da utilidade esperada (TUE) difere da coordenação

entre agentes que medem os valores das suas ações usando a descritiva teoria da perspetiva cumula-

tiva (TPC), em dois cenários experimentais: um jogo de caça ao veado em forma normal permite-nos

estudar as diferenças na coordenação quando os agentes usam a TUE e a TPC, enquanto que um jogo

de Markov da caça ao veado se foca em estudar os efeitos de polı́ticas cada vez mais sofisticadas entre

agentes que usam ambas teorias de valor, usando o modelo de nı́vel-k como uma teoria da mente

recursiva que captura efeitos de racionalidade limitada. Nesta tese, demonstramos que os agentes-

TPC são melhores a coordenar em ambas as experiências, comparados com os agentes-TUE. Para

além disso, no jogo da caça ao veado de Markov, embora ambas as teorias de valor mostrem aumen-

tos na coordenação com o aumento da sofisticação da polı́tica, os agentes-TPC não necessitam de

tanta sofisticação quanto os agentes-TUE para coordenar na mesma medida. Podemos então concluir

que, embora algumas destas tendências cognitivas são vistas como falhas em processos de decisão
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individuais, elas facilitam a interação social entre humanos.

Palavras Chave

Coordenação; Tendência Cognitiva; Teoria da Mente; Teoria da Utilidade Esperada; Teoria da Per-

spetiva Cumulativa; Nı́vel-k; Racionalidade Limitada.
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“Selection shapes brains that maximize the number of offspring who survive to reproduce themselves. This is very

different from maximizing health or longevity. It is also different from maximizing matings. That is why organisms

do things other than having sex. Especially humans. Having the most offspring requires allocating plenty of

thought and action to getting resources other than mates and matings, especially social resources, such as friends

and status. Everyone else is doing the same thing, creating constant conflict, cooperation, and vast social

complexity whose comprehension requires a huge brain.”

Randolph M. Nesse

Even with our inherently human quirks, we are the only species on this planet to have dominated it,

for better or worse. This would, of course, not be possible without our remarkable ability to cooperate

and coordinate our efforts towards a common goal. When studying coordination, however, researchers

often assume that agents, the mathematical representations of humans, are rational. This is likely due

to the parsimony of the resulting models and the ease with which conclusions can then be drawn from

them. The commonality of this assumption in scientific fields such as game theory and economics even-

tually coined the term homo economicus, a play on the taxonomic name of our species to capture the

essence of the purely rational agent.

Homo economicus, much like Santa Claus or free lunches, does not exist. This thesis is thus mo-

tivated by creating a better model for human decision-making, based on cognitive mechanisms of hu-

mans, in order to gain a better understanding of human coordination.

1.1 Cognitive Mechanics

The systematic deviations from rational behavior are called cognitive biases. It has been argued that

cognitive biases are useful for understanding human decision-making in inherently human domains such

as finance [2]. This is also our argument, that understanding the apparent failures of humans due to

cognitive biases may allow us better understand why we behave the way that we do, specifically in

social settings.

In addition, humans employ a theory of mind to predict the behavior of others by reasoning about

“what I think that you think that I think that...” and so on. The notion of bounded rationality comes into

play, because this reasoning is not performed ad infinitum by humans. Homo economicus would indeed

be able to do this, being an all rational being but, when in scenarios where others are not rational, it

may be sub-optimal and therefore irrational to have a “rational” (i.e. reasoning about “what I think that

you think that I think that...” ad infinitum) theory of mind. It is therefore worthwhile to study the effects of

increasingly sophisticated theory of mind on the coordination of agents.
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1.1.1 Framing and Risk Attitude

Take, for example, the framing effect: a cognitive bias that describes how people’s decisions is based

on the perceptual appearance of the semantics of outcomes [3]. Humans tend to frame outcomes into

subjective gains and losses and this framing depends on several factors. Outcomes are then evaluated

and a decision is made. The evaluation of outcomes is an important part of decision-making, which we

will discuss further in the next chapter. The perception of risk is an inherently animal characteristic, not

only of humans. Risk is defined as the possibility of losing something of value. Together with the framing

effect, losing is a subjective concept. It depends on your own wealth, the relative value of outcomes,

and many other factors. Risk attitude is the way humans attempt to lower uncertainty when exposed to

it. To illustrate this, consider the two options: a certain outcome of receiving a gift of 1MC and a gamble

in which 2MC and 0C are received with equal probability. The expected outcome of the gamble is equal

to the value of the certain outcome. A person is said to be:

• Risk-averse if they would prefer the gift, even if the gift was slightly lower than the 1MC,

• Risk-neutral if the gift and the gamble are equally preferred,

• Risk-seeking if they would prefer the gamble, even if the gift was slightly higher than the 1MC.

Humans tend to be risk-averse for outcomes perceived as gains and risk-seeking for outcomes per-

ceived as losses [3]. This realization, together with the non-linear perception of probabilities, proved

useful in the creation of cumulative prospect theory [4], a theory about making decisions under risk,

which we will formally introduce and use to model human decision-making in proceeding chapters.

We’ve seen how humans are complex in how we decide and now wish to contextualize risk-sensitivity

when multiple agents are present. To accomplish this task, we must once again understand how humans

do it.

1.1.2 Theory of Mind

Psychologist Daniel Goleman wrote in his famous book: “We are wired to connect” [5]. Humans are

naturally sociable to the extent that we are biologically dependent on social interaction to live a healthy

life. Sociability is not exclusive to humans but the complexity of social interactions is. A close relative to

humans, the chimpanzee, also exhibits complex behavior we attribute to developed emotional and social

intelligence. A highly cited article from 1978 sought to find if chimpanzees were capable of imputing

mental states to others and at the same time offered insights into how we humans intuitively interact

with each other [6]. Theory of mind is the ability to attribute mental states to oneself and to

others, and to acknowledge that these may be different from ones own.

3



Humans develop a theory of mind around age 4, and is crucial to child development; it enables

internal behaviors such as perspective taking and action prediction that informs many decisions we do

in our every-day lives. The lack of a theory of mind in humans can be indicative of brain disorders such

as autism and Alzheimer’s disease. Therefore, agents without a working theory of mind are lacking an

essential cognitive mechanism to inform decisions and produce human-like behavior. For this reason,

we will equip our agents with a working theory of mind model.

1.2 Problem Statement and Research Questions

Cognitive biases and theory of mind play an important role in human decision-making. Coordination

between humans is a well-studied topic in game theory, but it is commonly done by invoking axioms of

rationality and drawing conclusions which would only apply to a rational agent, the homo economicus.

In this thesis we wish to topple the long-standing reign of the homo economicus as the fundamental

building block in the study of social dilemmas and create a better, more human-like agent, by equipping

it with some cognitive biases and a working theory of mind. Specifically, we create agents with risk-

sensitivity and theory of mind and study how they coordinate in normal-form and Markov stag

hunt games. The rest of the thesis focuses on answering the following questions:

• Q1 - Can cognitive biases concerning risk promote coordination?

• Q2 - Can increasingly sophisticated levels of theory of mind promote coordination?

We show that both of these questions are answered with a resounding yes. This indicates that, while

these mechanisms often create sub-optimal individual behavior, they greatly facilitate human coordina-

tion.

The emergence of coordination and self-organization in nature, and indeed human societies, remains

an open question in many scientific areas, from evolutionary biology to psychology. As such, this thesis

offers a small contribution towards the understanding of these phenomena, showing that cognitive biases

and theory of mind may provide collective advantage which may be selected by evolution.

On the other hand, the understanding of the mechanisms of self-organization of collective action in

multi-agent systems remains one of the most important questions in artificial intelligence. In this context,

this work indicates that cognitive biases and theory of mind are two main ingredients that may promote

the cooperation between not only machines, but also in hybrid populations (with humans and machines)

that may exist in the near future [7].

4



1.3 Main Contributions

In this thesis, we combine a theory from economics about how people, with their cognitive biases, value

uncertain outcomes (i.e., using cumulative prospect theory) with a theory from psychology about how

people predict the actions of other people by managing an internal model of others (i.e., using recursive

theory of mind mimicking bounded rationality). The resulting outcome of this thesis is a novel framework

based on Markov games that allows for the study of agent interaction in stochastic environments where

time plays an important role, where the agents more realistic than the current paradigm, which generally

uses expected utility theory and perfect rationality.

The present thesis resulted in a conference paper under review, thus contributing to various

scientific disciplines of artificial intelligence, namely multi-agent systems and opponent modelling.

1.4 Outline of the Thesis

Chapter 1 described the setting of the rest of the work, and defined the problem statement as a set of

research questions to be answered at the end of the thesis. Specifically, we discussed the complexity of

human cognitive mechanics and how we propose to contribute to the creation of human-like agents and

to the understanding of coordination among these agents. We do so by making agents sensitive to risk

and equipping them with a working theory of mind. The remainder of this thesis is organized as follows:

The necessary background in individual decision theory, game theory, and theory of mind is introduced

in Chapter 2. Chapter 3 provides an overview of relevant work on risk perception, game theory with risk-

sensitivity and coordination among machines equipped with theory of mind, which form the theoretical

basis of this thesis. In Chapter 4, we detail two experimental setups to study the coordination of risk-

sensitive agents equipped with theory of mind. The results of the two experimental models are discussed

in Chapter 5. A summary of the results and implications is provided in Chapter 6, as well as suggestions

for future research.
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The way people attribute value to objects or events, such as economic goods and services, is a very

complicated subject which has been tackled well before the field of economics and game theory were

created. The attribution of value is formally called a theory of value. Today, marketing theories of value

are subjective in the sense that customers choose to buy on the basis of perceived value and, therefore,

perception (e.g. risk-sensitivity) has a lot to do with how humans decide.

When in groups, agents must value the outcome of their actions in accordance to what others will do.

Classical game theory studies these strategic interactions by assuming agents are rational. Behav-

ioral game theory is a descriptive theory of behavior which relies on studying games between agents

which are assumed to have bounded rationality.

In this chapter, we will describe how theories of value have changed over the years and introduce

current value theories, so that we may use these models to create agents that perceive value as humans

do. Furthermore, we will introduce concepts in game theory that will enable us to study coordination in

two different scenarios: single decision and decisions over time.

2.1 Theories of Value

Due to their heavy focus on human choices, theories of value are at the intersect of economic theory

and philosophy. In fact, the theory of value can be thought of as “ethics”, in a philosophical sense; what

people deem to be good or bad, irrespective of whether the entity under scrutiny is tangible, such as

a person or object, or intangible, such as an idea or event. While the concept of value has been in

the minds of humans for as long as there has been trade of commodities, the first recorded origins of

theories of value can be traced back to Greece [8], during the Classical period (circa 480 BC to 323

BC). Plato and his pupil, Aristotle, began the nearly two-millennia-long discussion on what it means for

things to have value. Plato thought of value as a quality intrinsic to an object whereas Aristotle offered

two points of view on value: use value and exchange value. Use value expressed the usefulness of

objects or ideas in a practical sense, e.g. “My horse is valuable because it does heavy labor for me”.

Exchange value was meant to capture the essence of how people regard objects of trade; it arises when

some people have too much and some people too little, e.g. a liter of water is much valuable in a desert

than it is in a tropical zone. These two perspectives were not meant to be mutually exclusive since a

shoe can both be worn and traded, but the use value and the exchange value need not be equal. In

a transaction, Aristotle hypothesised that a fair trade would be one in which all parties involved would

be no better or worse after the transaction than before the transaction. In other words, a shoe is as

valuable as the value of the labour of the shoe-maker when it is to be traded, and as valuable as one

wants his feet warm if it is to be used. According to this labour theory of value, a trade should only

occur between that shoe and another commodity whose labour value is equal to that of the shoe-maker
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to make the shoe.

This idea of fairness in price did not evolve for many centuries. During the Middle Ages, feudal-

ism was the predominant socio-political system and, as such, the theory of value became less about

the labour and more about the social status of the labourer. Europe was going through an economic

transformation with the rise of the merchant class and this tore a gap between the consumer and the

producer. The producer, author of the labour, was now more distant from the sale of the goods and thus

it became harder for people to estimate the value of things. During this time, the Roman Catholic Church

dominated Europe and because of that, most knowledge was owned and produced from theologians.

The difficulty of ascribing value to goods was alarming to the Church, as they deemed the growing ma-

terialism as spiritually dangerous. The Church therefore adopted a form of Aristotelian theory of value

combined with medieval labour theory and Christian theology. An important character of this time was

theologian Thomas Aquinas, who deemed the selling of goods at a higher price than they are valued as

immoral. His views were a mix of Aristotle’s labour theory of value and his religious views originating

the notion of a just price which, in his view, was an intrinsic property of a commodity not necessarily

correlated to the price it was sold for. Thus, he showed difference between price and value.

As mercantilism kept growing in Europe, the theory of value began diverging from a labour perspec-

tive to one focused on the utility and quantity of goods. A physician-turned-builder called Nicholas “If-

Christ-had-not-died-for-thee-thou-hadst-been-damned” Barbon, named after his Puritan father Praise-

God “Unless-Jesus-Christ-Had-Died-For-Thee-Thou-Hadst-Been-Damned” Barebone (or Barbon), wrote

pamphlets about the idea that a market value is determined by the supply and demand of goods [9, p.

63]. Many people such as William Petty, John Locke and Adam Smith (in his book Wealth of Nations)

were responsible for the advancement of mercantilism up until the 18th century. By that time, a new

school of thought emerged, the physiocrats, which turned back to the idea of value through usefulness,

or utility, and that there was no intrinsic value to things.

While the term homo economicus was first used in the late nineteenth century to describe a “dollar-

hunting animal”, in this thesis we refer to the same term to describe agents which use Expected Utility

Theory (EUT) – the prescriptive model of behavior.

2.1.1 Expected Utility Theory

The St. Petersburg paradox discovered by Nicolas Bernoulli [10] was one of the first instances of a

problem now tackled in economics. The problem is as follows: a person (the entrant) is to determine

the fair value he should pay to enter a game offered by someone else (the host) in which a (presumably

unbiased) coin is repeatedly tossed and once a heads comes up, the host pays the entrant 2N coins,

where N is the number of tosses until a heads comes up. A fair value would be the number of coins

such that both the entrant and the host have similar expected earnings. The paradox comes up when
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trying to compute the expected earnings of the entrant:

E
[
2N
]

=

∞∑
n=0

2n P(N = n) =

∞∑
n=0

2n
(

1

2

)n
=

∞∑
n=0

1 =∞. (2.1)

This means the entrant would rationally be willing to pay any sum to enter the game since he is

expected to earn infinite coins at the end, while the host would not rationally accept any finite payment

of coins from the entrant. The way one computes the expected earnings as a direct expectation of a

random variable is called expected value theory.

In correspondence with his cousin, Daniel Bernoulli paved way for what was later called expected

utility theory whilst solving this problem:

“The determination of the value of an item must not be based on the price, but rather on the

utility it yields. . . . There is no doubt that a gain of one thousand ducats is more significant to

the pauper than to a rich man though both gain the same amount.”

As such, he proposed a logarithmic utility solution, which included the entrant’s wealth w and cost to

enter c:

E
[
u(2N , w, c)

]
=

∞∑
n=0

u(2n, w, c)P(N = n) =

∞∑
n=0

(ln(w + 2n − c)− ln(w))

(
1

2

)n
<∞. (2.2)

The idea of using a utility function enabled the representation of a measure of risk through dimin-

ishing marginal returns, a fundamental concept in economics. It is well known that humans are not

risk-neutral. In general, we have some predisposition to risk, determined by several factors including our

personalities, mental state and financial means. This is what expected utility theory, and every theory of

value, tries to describe.

The scientific revolution and end of feudalism increased the amount of scientific research in Europe

but, by that time, the philosophical debate had turned into an economic one for many years. Ethics were

not longer the issue, money was. It was only many years later that expected utility theory was formalized

by John von Neumann and Oskar Morgenstern, with the advent of classical game theory, which will be

discussed in the next section. In their book [11], they use preference ranking of outcomes as a way

to describe rational decision-making, for which there exists a utility function that is able to replace the

abstract ordering by a ranking of real numbers. These outcomes may be uncertain themselves, in which

case they are called lotteries or prospects. If outcome X is preferred over outcome Y then X � Y .

If outcome Y is preferred over outcome X then X ≺ Y . If outcome X is indifferent to outcome Y then

X ∼ Y . A preference ranking of outcomes is rational if it satisfies the following four axioms of choice:

• Completeness: For any two prospects X,Y , either X � Y or X ≺ Y or X ∼ Y .
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• Transitivity: If X � Y and Y � Z then X � Z and similarly for ∼.

• Continuity: If X < Y < Z then ∃p ∈ [0, 1] such that pX + (1− p)Z ∼ Y .

• Independence: If X < Y then for all Z ∃p ∈ [0, 1] such that pX + (1− p)Z < pY + (1− p)Z.

The conclusions drawn from classical game theory rests on these four axioms. Thus, classical game

theory describes the strategic interaction between rational decision-makers. Depending on the domain in

which classical game theory is applied, and thus on the nature of the agents it tries to model, this notion

of rationality may or may not apply. In applications wherein rationality of preferences is determined by

immutable rules (e.g. the laws of physics), such as modelling the growth of several types of bacteria in

a petri dish, classical game theory sees all four axioms satisfied and conclusions drawn can be trusted

with relatively high confidence. However, in scenarios where agents are abstract representations of

humans, classical game theory is challenged as an accurate description of decision-making [4,12]. The

famous Allais paradox [13] and Ellsberg paradox [14] are two such demonstrations of the divergence

between the axiomatic of classical game theory and human decision-making.

Behavioral game theory attempts to create models to describe human decision-making [15]. The

major difference between classical and behavioral game theory is that the former describes the actions

of rational agents while the latter gets rid of the notions of rationality and focuses instead on how humans

actually decide. Models of human behavior are harder to obtain however, due to the previously discussed

complex cognitive mechanics which are an impediment to mathematical tractability.

2.1.2 Prospect Theory

Daniel Kahneman and Amos Tversky proposed, in 1979, a behavioral theory of value called Prospect

Theory (PT). In [12], an argument is made about the irrationality of people’s decisions and, with behav-

ioral data, they propose a theory of value that models a few cognitive biases observed in the data.

Definition 2.1 (Prospect). LetR be a discrete random variable representing an outcome, with supp(R) =

{r1, ..., rn}. A prospect (r1, p1; ...; rn, pn) is a gamble that yields outcome ri with probability P(R = ri) =

pi, where
∑n
i=1 pi = 1.

Prospect theory allows an agent to consider prospects and make a decision. It does so in two phases:

the editing phase and the evaluation phase. In the editing phase, agents pre-process prospects

according to their perception and cognitive mechanics. One of these is the framing effect, which divides

the prospect into losses and gains by considering a reference point. The perceived prospect can then be

written as (r1, p1; ...; rk, pk; ...; rn, pn), where k is the index of the reference point. Then, in the evaluation
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phase, the agent evaluates the perceived prospect as follows:

V (R) =

n∑
i=k+1

u+(ri)w(pi) +

k∑
i=1

u−(ri)w(pi). (2.3)

Intuitively, the value of a prospect is a sum of “distorted” expected values of the “split” random value R

via the reference point. Outcomes ri are divided into gains and losses and are perceived, as in expected

utility theory, by their respective utility functions u+ and u−. To reflect the risk attitude of people about

gains and losses, u+ is concave and u− is convex, making these agents risk-averse in gains and risk-

seeking in losses. Furthermore, u− is also taken to be steeper than u+, effectively considering losses

more heavily than gains, a cognitive bias called loss aversion. Probabilities are distorted by a weighting

function w which non-linearly transforms probabilities to model our perception of these and the so-called

certainty effect.
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Figure 2.1: Common CPT utility function,
u(x) = x0.85, for x ≥ 0, and
u(x) = 2|x|0.85, for x < 0, with
reference point at 0. Both negative
and positive parts are sublinear,
demonstrating risk-sensitivity, and the
negative part is steeper, demonstrating
loss aversion by weighting losses more
heavily than gains.
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Figure 2.2: Common CPT probability weighting
function, w(p) = exp{−δ(− log(p))γ},
with δ = 0.5 and γ = 0.9. Low prob-
abilities are overweighted significantly.
CPT transforms cumulative probabili-
ties, effectively overweighting rare and
extreme events.

Some theorists take issue with this value theory because it does not satisfy first-order stochastic

dominance [4]. Stochastic dominance establishes an ordering of random variables based on their distri-

bution functions over the set of outcomes [16].

Definition 2.2 (First-order Stochastic Dominance (FSD)). Let X and Y be random variables with dis-

tribution functions FX and FY , respectively. X dominates Y , in the first-order stochastic sense, if

P(X ≥ r) ≥ P(Y ≥ r) for all r, and for some r, P(X ≥ r) > P(Y ≥ r).
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In other words, X dominates Y in the first-order stochastic sense, if the following holds: for any

outcome r, X gives at least as high a probability of receiving at least r as does Y , and for some r, X

gives a higher probability of receiving at least r.

Definition 2.3 (Statewise Stochastic Dominance (SSD)). Let X and Y be random variables with distribu-

tion functions FX and FY , respectively. Then, X dominates Y in the statewise stochastic sense, if x ≥ y

for all x, y and x > y for some x, y.

In other words, X dominates Y , in the statewise stochastic sense, if the following holds: all outcomes

of X are at least as good as all outcomes of Y and at least one outcome of X is strictly better than all

outcomes of Y .

Therefore, FSD is a special case of SSD. A simple example of how prospect theory violates SSD,

and consequently, FSD can be done with a cast of a die.

Example 2.1.1 (Prospect theory violation of SSD). Consider the prospect of casting an unbiased 6-sided

die. The outcome of a cast is represented by a discrete uniform random variable R, with support

{1, 2, 3, 4, 5, 6}. Taking all these outcomes to be gains by setting the reference point to be 0, we can

calculate the value using prospect theory as follows:

V (R) =

6∑
i=1

u(ri)w(pi) = w

(
1

6

)
(u(1) + u(2) + u(3) + u(4) + u(5) + u(6)). (2.4)

Assuming u(r) = r0.85 and w(p) = exp
{
−0.5(log(p))0.9

}
, the value of this prospect is 7.35, which is

larger than the maximum possible outcome which is 6. In fact, an agent which behaves according to

prospect theory would choose this gamble over the certainty of a gift of 7; thus, violating the SSD.

2.1.3 Cumulative Prospect Theory

To overcome the limitation presented in Example 2.1.1, Kahneman and Tversky improved on their theory

in 1992 with Cumulative Prospect Theory (CPT) [4]. By weighing cumulative probabilities instead, first-

order stochastic dominance is satisfied. The value of a prospect R is obtained as follows:

V (R) =

n∑
i=k+1

u+(ri)[w
+(P(R ≥ ri))− w+(P(R > ri))] +

k∑
i=1

u−(ri)[w
−(P(R ≥ ri))− w−(P(R > ri)).

(2.5)

The relative dependency of the outcomes on the probabilities translates the fact that people overweight

extreme but unlikely events, whereas with PT agents would overweight unlikely events independently of

the outcome.

Henceforth, we distinguish two types of agents: EUT-agents and CPT-agents, depending on which

theory of value they use, i.e., EUT and CPT, respectively.
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2.2 Game Theory

Game theory is the study of strategic thinking. It makes use of games to model group interactions

between agents1.

A game is specified by four elements:

• Agents - these are the decision makers that will perform the actions,

• Actions - a specification of what agents can decide,

• Information - the basis on which agents can inform their decisions,

• Rewards - the objective of the agents, the motivation for their decisions.

Solving a game (i.e. finding what players will decide) requires further assumptions on the rationality of

players and on external influences (e.g. are agreements binding or self-enforced?). Common knowledge

of rationality creates games that are studied under classical game theory, whereas behavioral game

theory studies games wherein no such assumption is made. Classical game theory is divided into two

major areas: cooperative game theory and noncooperative game theory. Cooperative game theory

studies games in which externally enforced coalitions can be formed and agents employ some degree

of trust in one another. Noncooperative game theory, on the other hand, makes no such assumptions;

it studies games where agents have only their individual self-interest at heart2. For the purpose of

Figure 2.3: A (simplified) map of games and stochastic models. There is a myriad of games studied under game
theory, with different assumptions on the information structure that specify a game. The Markov game is
at the intersect between game theory and stochastic processes, a generalization of the dynamic game,
by allowing stochastic transitions between states, and of Markov decision process, by extending it to
the multi-agent case.

1A distinction is sometimes made between the terms agent and player, to distinguish between the decision makers in cooper-
ative and noncooperative games. We will stick with the (arguably) more general term agent, since player assumes there is always
an opponent.

2This does not exclude cases where individual self-interest is a function of the well-being of others.
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this thesis, we will review normal-form games and the Nash equilibrium concept in order to understand

how to study coordination. To broaden our discussion of coordination under risk, we will also strive to

understand the trade-off between long-term and short-term rewards in a game-theoretical setting. To

accomplish this we will review some basic concepts on Markov chains, which we will see as a model of

discrete time evolution of a passive agent. We will then add control and motivation to the agent, resulting

in a Markov decision process. Lastly, we will create a Markov game, a model that allows several of these

agents to interact.

2.2.1 Normal-Form Game

A normal-form game is a tuple (N,A, R) with the following elements:

• A set of n agents N = {1, ..., n},

• A collection of sets of action spaces A = {A1, ...,An}, with joint action space A = ×
i∈N
Ai, and

• A collection of reward functions R = {r1, ..., rn}.

In a normal-form game, the process of decision-making is simultaneous (i.e., agents decide at the same

time) or, equivalently, decisions are made with no additional information of the player’s behavior before

it is executed. A play of a normal-form game has the following steps:

1. Each agent i simultaneously decides which action ai to perform, out of the Ai possible actions,

creating a joint action a = (a1, ..., an) ∈ A, and

2. Each agent i receives a reward ri(a), as a function of the actions of all agents.

A rational agent seeks to perform the maximization of the received reward

max
ai

ri(ai,a−i), (2.6)

where we write a = (ai,a−i) to emphasize the perspective of agent i, with a−i being the joint action

of all agents except that of agent i. If every agent is performing this maximization, then a−i is being

chosen accordingly by every other player. The common knowledge of rationality assumption, made by

classical game theory, means that everyone knows all agents are rational, that everyone knows that

everyone knows that all agents are rational, and so on ad infinitum. This allows agents to break free of

this recursion and calculate what is called a Nash equilibrium.

Definition 2.4 (Deterministic Nash Equilibrium (DNE)). A joint action a∗ = (a∗1, ..., a
∗
n) is a deterministic

(or pure) Nash equilibrium if, for every agent i,

ri(a
∗
1, ..., a

∗
i , ..., a

∗
n) ≥ ri(a∗1, ..., ai, ..., a∗n), (2.7)
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for all actions ai ∈ Ai.

In some cases, agents may be allowed to choose a distribution over actions, instead of a single

action. In these cases, the behavior of an agent i is determined by a distribution function called policy

πi : Ai × [0, 1], with
∑
a∈Ai

πi(a) = 1, where πi(a) is the probability that agent i chooses action a ∈ Ai.

The space of all possible policies of agent i is denoted by Πi such that πi ∈ Πi. It is worthy of note that

deterministic decision-making can be represented by a degenerate probability distribution and we will

refer to these as deterministic policies, so that the term policy becomes the umbrella term for behavior.

In this case, the notion of a Nash Equilibrium must be different, since the reward function depends on

the actions played, which are now random variables. Therefore, the agents must find a way to evaluate

their actions. In game theory, rational agents calculate the expected value of the rewards, given the joint

policy of the other agents. We will denote the value of a joint policy π = (πi,πi) from the perspective of

agent i by Vi(πi,πi).

Definition 2.5 (Stochastic Nash Equilibrium (SNE)). A joint policy π∗ = (π∗1 , ..., π
∗
n) is a stochastic (or

mixed) Nash equilibrium if, for every agent i,

Vi(π
∗
1 , ..., π

∗
i , ..., π

∗
n) ≥ Vi(π∗1 , ..., πi, ..., π∗n), (2.8)

for all policies πi ∈ Πi.

In other words, a Nash equilibrium3 is a joint action from which no agent will be better off by unilat-

erally switching their individual action/policy. Thus, Nash equilibria prescribe the possible behavior of

rational agents under the assumption that there is common knowledge of rationality.

Noncooperative game theory uses normal-form games (albeit others games are used as well) to

study social dilemmas. A social dilemma is a situation between agents in which selfish behavior is

profitable only if it is not adopted by everyone. These are modelled with normal-form games such as the

prisoner’s dilemma [18], one of the most famous of all normal-form games. In the prisoner’s dilemma,

two prisoners accused of robbing a bank are jailed in two separate cells. The police interrogates them

and offers them a deal. If they both stay silent and say nothing, they both serve a sentence of 1 year.

If they both confess to the crime, and consequently snitch on their partner, they both serve a sentence

of 5 years. However, if one of them stay silent and the other confesses, the silent partner goes to jail

for 10 years and the snitch goes free. Only one Nash equilibrium exists in the prisoner’s dilemma, both

agents choose to confess. This is an example of why completely rational agents would not choose

to stay silent and minimize the total years spent in prison.

3For a study of the epistemic conditions of the Nash equilibrium, see [17].
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Agent 2

C S

Agent 1
C −5,−5 0,−10

S −10, 0 −1,−1

Table 2.1: The payoff matrix of the prisoner’s dilemma. The rows are actions decided by agent 1 and columns are
actions decided by agent 2, with C stands for confess and S stands for remaining silent. The reward of
both agents is written in the cell of the corresponding joint action. The number on the left is the reward
of agent 1 and the one on the right is the reward of agent 2.

Agent 2

S H

Agent 1
S 5, 5 0, 1

H 1, 0 1, 1

Table 2.2: The payoff matrix of the stag hunt. The rows are actions decided by agent 1 and columns are actions
decided by agent 2, where S stands for hunting stag and H stands for hunting hare. The reward of both
agents is written in the cell of the corresponding joint action. The number on the left is the reward of
agent 1 and the one on the right is the reward of agent 2.

2.2.2 The Stag Hunt Game

While one can find analogies to the prisoner’s dilemma in several domains, there is another normal-form

game which encompasses a different type of dilemma. The game of the stag hunt tells a story of two

hunters going out to hunt a stag [19]. On the way, they both see a hare running off right in front of them.

Both hunters now have to make a decision to either keep hunting the stag or switch to hunting the hare.

They both know that hunting the stag alone is an unfruitful endeavor, while the hare can be hunted solo.

This presents the hunters with a dilemma regarding individual safety and social cooperation; the hare is

a sure-thing but is a small prey and the stag is more rewarding but requires coordination.

Definition 2.6 (Coordination Game). A coordination game is a game with two or more Nash equilibria

in which agents choose policies whose support is the same or have some sort of correspondence.

An example of the stag hunt, a coordination game, can be found in Table 2.2. The stag hunt has

two DNEs (both agents hunting stags or both agents hunting hares) and a single SNE. It is with this

SNE that we will study coordination among agents using expected value theory and cumulative

prospect theory, in Chapter 4 and Chapter 5, respectively.

2.2.3 Markov Game

A normal-form game, such as the prisoner’s dilemma, can be played a number of times. These repeated

games4 capture the idea that an agent will have to take into account the impact of his current action

4The famous Axelrod’s tournament used the iterated prisoner’s dilemma to show that Darwinian evolution of strategies can
originate cooperation based on reciprocity [20].
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on the future actions of other agents. This dilemma of short-term versus long-term rewards and their

associated risk is something we will include in our model, as a CPT value function in a Markov game. We

will use Markov chains to model the stochastic nature of real-world environments5, add decision-making

through actions and rewards and derive the Markov decision process and generalize it to multiple agents

to create the Markov game.

2.2.3.A Markov Chain

Definition 2.7 (Markov Chain). A sequence of random variables {St}t is a (discrete time) Markov chain

if it satisfies the first-order Markov property:

P(St+1 = st+1|St = st, St−1 = st−1, ..., S0 = s0) = P(St+1 = st+1|St = st). (2.9)

In other words, the first-order Markov property states that the state of the future depends only on

the present state. A Markov chain can be interpreted as a model of stochastic evolution of a system. A

system can be in one of several states which change according to a probability distribution that depends

only on the current state. A time-homogeneous, discrete space Markov chain with discrete time and

discrete state space S can be fully specified by the time-independent transition matrix P , a stochastic

matrix with elements Pij = P(St+1 = j|St = i), whose rows and columns are sorted in the same fashion

as the state space S.

Definition 2.8 (Accessibility, Communication and Irreducibility). State j is accessible from state i if

there exists an integer nij ≥ 0 such that

P(Snij = j | S0 = i) = p
(nij)
ij > 0.

A state i is said to communicate with state j if both i is accessible from j and j is accessible from i.

A communicating class is a maximal set of states C ⊆ S such that for every i, j ∈ C, i communicates

with j.

A Markov chain is irreducible if its state space S is a single communicating class.

Definition 2.9 (Recurrence). Let the random variable Ti = inf{t ≥ 1 : St = i} be the recurrence time to

state i. Let f (t)ii = P(Ti = n | X0 = i) be the probability that the system returns to state i for the first time

after t steps. State i is recurrent if

P(Ti <∞ | X0 = i) =

∞∑
t=1

f
(t)
ii = 1.

5When we add risk-sensitive agents we are effectively making agents which are also sensitive to the risk coming not from the
other agents but also from the environment.

18



State i is positive recurrent if

E[Ti] =

∞∑
t=1

tf
(t)
ii <∞.

In other words, a Markov chain is irreducible if it is possible to get to any state from any state.

Additionally, a state is positive recurrent if it takes a finite amount of time, on average, for the system to

return that state.

Theorem 2.1 (Stationary Distribution). Let {St}t be a time-homogeneous, discrete time Markov chain

with discrete state space S. If {St}t is irreducible and all states in S are positive recurrent, then it has a

stationary distribution ρ = (ρ1, ..., ρ|S|) such that:

• ∀i ∈ S, ρi ≥ 0,

•
∑
i∈S ρi = 1, and

• ρ = ρP .

We will now illustrate the use of a Markov chain with a simple example, upon which we will improve

on by adding different elements when we discuss Markov decision processes and Markov games.

Example 2.2.1 (Random Walk). A one-dimensional random walk describes the path taken by, for ex-

ample, a drunkard that moves according to a fixed transition probability distribution on a line. In this

example we will model a random walk on a constrained discrete line with a discrete time Markov chain

with state space S = {0, ..., 15}. We say “line” because, from any state i, it is only to go to states i− 1 or

i+ 1 (if possible due to endpoints) or to remain in state i.

Figure 2.4: The transition diagram of the Markov chain modelling the discrete line with 16 states.

Let us consider that, for all states i ∈ S \ {0, 15}, Pi,i = 0.25, Pi,i−1 = 0.5, Pi,i+1 = 0.25 and that

P0,0 = 0.75, P0,1 = 0.25, P15,15 = 0.5, P15,14 = 0.5. It is easy to see that this Markov chain is irreducible

and all its states are positive recurrent and therefore there exists a stationary distribution ρ such that

ρ = ρP (see Figure 2.6).

2.2.3.B Markov Decision Process

If we then add control and motivation to the previously passive agent in a Markov chain we obtain a

Markov decision process [21].

Definition 2.10 (Markov Decision Process (MDP)). A Markov decision process is a tuple (S,A, P,R)

with the following elements:
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Figure 2.5: The transition matrix of the
Markov chain modelling the
discrete line with 16 states.
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Figure 2.6: Stationary distribution of the drunkard’s ran-
dom walk. It is unsurprisingly skewed to the
left, since there is a higher probability of going
to the left than staying or going to the right.

• A discrete state space S,

• A finite set of actions A,

• A transition function P : S ×A× S → [0, 1], and

• A reward function R : S ×A× S → R.

A MDP is a model of control in a stochastic environment. A single agent wishes to find, for each

state s ∈ S, a policy π(a|s) that maximizes some function of the obtained rewards, which we will call the

value V . We will consider only the infinite-horizon expected discounted sum of rewards case where the

reward function is solely a function of the current state, in which case the value is defined as

V (s, π) = Est+1∼P (·|π,st)

[∑
t=0

βtr(st)|s0 = s

]
, (2.10)

where the expectation is taken to be on the stochastic dynamics of the system which is fully specified by

the decided policy of the agent, and β ∈ (0, 1) is the discount factor, a parameter that both insures the

value is finite and controls the agent’s sensitivity to long-term rewards. In summary, an agent in a MDP

seeks find the optimal policy

π∗ = argmax
π

V (s, π) = argmax
π

Est+1∼P (·|π,st)

[∑
t=0

βtr(st)|s0 = s

]
, (2.11)

which can be solved via a dynamic programming scheme such as value iteration [21] (see Appendix B

for a brief introduction to dynamic programming in the context of game theory).

Example 2.2.2 (Controlled Random Walk). If our drunkard from Example 2.2.1 is allowed to control its

random walk by choosing on which hand he carries his bottle then this decision-making process can

be modelled with a MDP, with state space S = {0, ..., 15}, action space A = {L, S,R}, reward function
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r, and transition function P . Let us assume that if he chooses to hold his bottle on the left hand (i.e.,

chooses action L), then he will move according to the transition matrix PL presented in Figure 2.5 –

similar to Example 2.2.1. If, instead, he chooses to hold his bottle on the right hand (i.e., chooses action

R) then he will move according to the transition matrix PR that, for all states i ∈ S \ {0, 15}, PRi,i = 0.25,

PRi,i−1 = 0.25, PRi,i+1 = 0.5, and that PR0,0 = 0.50, PR0,1 = 0.50, PR15,15 = 0.75, PR15,14 = 0.25 – see Figure 2.9.

He can also choose to hold the bottle with both hands (i.e, choose action S), moving according to the

transition matrix PS that, for all states i ∈ S \ {0, 15}, PSi,i = 0.50, PSi,i−1 = 0.25, PSi,i+1 = 0.25 and that

PS0,0 = 0.75, PS0,1 = 0.25, PS15,15 = 0.75, PS15,14 = 0.25 – see Figure 2.8.
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Figure 2.7: The transition dia-
gram of the Markov
chain resulting from
choosing action L, in
the Markov decision
process example.
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gram of the Markov
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choosing action S, in
the Markov decision
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Figure 2.9: The transition dia-
gram of the Markov
chain resulting from
choosing action R, in
the Markov decision
process example.

He wants to either get home, at state 3, or go to the next bar, at state 11, but he prefers going to

the next bar. Therefore, he is motivated by the reward function r such that r(3) = +1, r(11) = +5, and

r(s) = 0, ∀s ∈ S \ {3, 11}.

He wishes to maximize the value in Equation (2.10), with β = 0.9. Using value iteration (see Ap-

pendix B), we obtain the optimal value and policy in Figures 2.10 and 2.11.
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Figure 2.10: The optimal value for the MDP exam-
ple, with discount factor β = 0.9.
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Figure 2.11: The optimal policy for the MDP exam-
ple, with discount factor β = 0.9.

2.2.3.C Markov Game

A Markov game [22] is the generalization of MDPs to the multi-agent case.
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Definition 2.11 (Markov Game). A Markov game is a tuple (N,S,A, P,R) with the following elements:

• A set of n agents N = {1, ..., n},

• A joint state space S = ×
i∈N
Si, where Si is the state space of agent i and × is the Kronecker

product,

• A set of joint actions A = ×
i∈N
Ai, where Ai is the set of actions of agent i,

• A transition function P : S ×A× S → [0, 1], and

• A collection of reward functions R = {r1, ..., rn}.

A Markov game is then a model of multi-agent control in a stochastic environment. Being a game,

solving it means finding the joint policy of all agents. A solution concept based on the Nash equilibrium

exists, the Markov perfect equilibrium, but we will take a different approach. Regardless, we will assume

each agent i has a value they seek to maximize

Vi(s, πi,π−i) = Est+1∼P (·|πi,π−i,st)

[ ∞∑
t=0

βtri(st)

]
, (2.12)

with the dynamics now prescribed by the joint policy π = (π1, ..., πn). Each agent will then find their

optimal policy π∗i that maximizes their value, given the joint policy of the other agents π−i, i.e.,

π∗i = argmax
πi

V (s, πi,π−i) = argmax
π

Est+1∼P (·|πi,π−i,st)

[ ∞∑
t=0

βtri(st)

]
. (2.13)

By not taking the equilibrium approach, and therefore, foregoing completely rational action, we must

have a method through which each agent i obtains the policies of every other agent π−i.

2.3 Level-k Bounded Rationality - A Theory of Mind Model

In reality, adult people have very well developed prior knowledge about the default behavior of systems

they encounter in their every day lives, including of other people. This prior knowledge is a belief system

that is learned throughout life to which we call intuition. Specifically, when people have beliefs about the

behavior of others, it is a form of intuitive psychology [23]. A theory of mind model is one mathematical

formulation of a theory of intuitive psychology. Since people operate based on their beliefs, the concept

of the Nash equilibrium is not a good descriptor of behavior in normal-form games. However, it is possible

to obtain a similar equilibrium concept if we model these beliefs, into what is known as rationalizability

[24, 25], which still assumes agents are rational and common knowledge of rationality. This is because

a rational agent maximizes perceived value (which is a function of their beliefs) and not the actual value.
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Similar to rationalizability is the level-k bounded rationality, a recursive theory of mind model [26]. In

the level-k model, all agents make initial assumptions on the behaviors of all agents. These assumptions

are level-0 policy beliefs we will call stereotype policies. To greatly simplify the formal explanation of

the level-k model, we will make the following assumptions:

1. There are only two agents at play, agents 1 and 2,

2. Both agents have the same value function V1 = V2 = V ,

3. They both know the stereotypes policies of one another, denoted π(0)
1 ,π(0)

2 , and

4. All the above is common knowledge6.

With these assumptions, we are greatly simplifying modelling process by eliminating the agent’s

problem to infer the behavior of others through their beliefs. This is actually what we want because

we want to understand how coordination is affected in a theory of mind model, and not how inference

mistakes alter that understanding7.

Now that the agents have a solid basis of assumptions, the level-k model establishes a hierarchy of

behaviors (policies) of increasing sophistication level8. Agent 1 has a stereotype policy about agent 2

π
(0)
2 and will try to best respond by maximizing the value under the assumption that agent 2 is using π(0)

2 .

Agent 1 will then calculate π(1)
1 = argmax

π1

V (π1, π
(0)
2 ). Agent 2 will go through the same reasoning and

calculate π
(1)
2 = argmax

π2

V (π2, π
(0)
1 ). We will refer to the superscript in π

(·)
i as the sophistication level,

such that π(k)
i is the level-k policy. However, agent 1 can reason agent 2 is not actually using π(0)

2 but

is instead using π(1)
2 and as such agent 1 will calculate the level-2 policy π(2)

1 = argmax
π1

V (π1, π
(1)
2 ), and

agent 2 will calculate π
(2)
2 = argmax

π2

V (π2, π
(1)
1 ). This tower of policies can be constructed recursively

with

π
(k)
1 = argmax

π1

V (π1, π
(k−1)
2 ), and

π
(k)
2 = argmax

π2

V (π2, π
(k−1)
1 ).

(2.14)

We will use this scheme to model theory of mind of agents in Markov games, as an alternative to using

equilibrium solution concepts.

6In other words, they both know that they know this, they both know that they know that they know this, and so on ad infinitum.
7Which may prove be an interesting avenue of future research.
8This structure is what gives the model its name.
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In this chapter, we will review scientific works which have studied risk-sensitivity and theory of mind.

3.1 Risky Decisions

While there is not yet any one universally satisfactory definition of risk1, it has been studied at length

since its first definition [27]. In most cases, quantitative studies are done using statistical methods to

measure the risk of a particular set of outcomes. The analysis of risk is usually done in the domains of

business and finance, where there are constant risks that must be taken in to account and controlled [28].

However, we are interested in a different type of risk, the one perceived by humans. We are interested

in understanding risk perception and how it affects human collective behavior, which is studied in the

social sciences as a cultural theory of risk2 [29].

EUT and PT/CPT are risk-sensitive theories of value. However, empirical evidence suggests that

PT/CPT are better models of human decision-making than EUT. Private bankers and fund managers

behave according to PT and violate EUT [30]. Inexperienced consumers in a well-functioning mar-

ketplace behave according to PT while those with more experience behave according to more recent

economic theories, showing that learning plays an important role in risk perception [31]3. A study using

a model inspired by PT helped explain properties seen in asset prices in an economy where investors

derive direct utility not only from consumption but also from fluctuations in the value of their financial

wealth [32]. The presence of reference points was observed in a large database of firms, together with

risk seeking behavior for firms below their reference point and risk averse behavior for firms above their

reference point, and risk seeking behavior being more intense than risk averse behavior [33]. Prospect

theory was used to explain why political actors pursue risky reforms, in spite of political resistance

that counteract change [34]. Decision-making models achieved state of the art performance on human

judgement datasets by creating neural networks with human-like inference bias by pretraining them with

synthetic data generated by CPT [35].

The transformation of cumulative probability rather than individual probability is the crucial idea be-

hind rank-dependent theory [36]; it described the choice behavior seen in the Allais paradox [13]. This

was the main motivation behind the update done to PT that originated CPT [4]. A discussion of the

practical differences between PT and CPT can be found in [37]. However, other models of risk percep-

tion exist. Disappointment aversion is a model consistent with the Allais paradox that includes EUT

as a special case [38]. A modification of PT/CPT endogenizes the reference point based on previous

experience of agents [39]. Another modification of PT/CPT, named third-generation prospect theory,

1Apart from being the collective noun for lobsters.
2Cultural theory of risk argues that risk perception is not formed independently of social context, but rather as an emergent

property of human systems.
3This study also shows agents with intense market experience are more willing to part with their entitlements than lesser-

experienced agents, a cognitive bias called divestiture aversion, or endowment effect in behavioral economics.
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makes the same predictions as CPT but it can also account for the endowment effect and preference

reversals [40].

Some criticism on the use of PT/CPT as the default alternative to risk-sensitive models of human

choice models have been recently presented [41–43], but we will ignore these under the pretext that

there has been no more widely accepted theory of human choice under risk than CPT. Furthermore,

our goal is not to use this model to explain human behavior in the most accurate way, but instead,

to equip agents with a risk-sensitive model that more closely resembles human risk-sensitivity than

standard EUT does.

3.2 Risky Games

In game theory, the equilibrium solution concepts in normal-form games using PT and CPT have been

previously studied [44]. A definition of equilibrium in a normal-form game with agents using PT and CPT

is proposed and hereafter, introduced for the reader’s convenience.

Definition 3.1 (PT- and CPT-equilibrium). In a normal-form game, a joint policy π ∈ Π is a PT-equilibrium

given reference point b ∈ Rn if for all i = 1, ..., n and all πi ∈ Πi we have V PT
i (π, bi) ≥ V PT

i (πi,π−i, bi).

Analogously, a joint policy π ∈ Π is a CPT-equilibrium given reference point b ∈ Rn if for i = 1, ..., n

and all πi ∈ Πi, we have V CPT
i (π, bi) ≥ V CPT

i (πi,π−i, bi).

These are analogous to Nash equilibria, which use EUT as a theory of value. Therefore, it is worth-

while comparing the two equilibria as a way of comparing the two theories of value (i.e., CPT and EUT)

in a multi-agent setting.

Prospect theory was used to study the cooperation in the iterated prisoner’s dilemma [45].

We suggest the reader to look into [46, 47] that provide an comprehensive description of risk mea-

sures on MDPs. In particular, they show that a Bellman equation4 exists for the CPT-value in both the

finite-horizon and discounted infinite-horizon cases. In the discounted infinite-horizon MDP, the recursive

solution to the CPT-value is, for a state s ∈ S and policy π,

V CPT(s, π) =

∫ ∞
0

w+

 ∑
a∈A(s)

P as (u+((r(s) + βV CPT(S, π)− b)+) > ε)π(a|s)

 dε

−
∫ ∞
0

w−

 ∑
a∈A(s)

P as (u−((r(s) + βV CPT(S, π)− b)−) > ε)π(a|s)

 dε,

(3.1)

where b is the reference point and, together with (·)+ = max(0, ·) and (·)− = −min(0, ·), they split the

4A Bellman equation is a recursive solution of an initially difficult problem which is generally obtained via dynamic programming.
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calculation of the value into an integral for gains and another for losses. The discount factor β ∈ (0, 1)

controls the importance of long-term rewards over short-term rewards and r(s) is the reward at state

s ∈ S. The random variable S represents the next state and P as is the probability measure conditional

to the current state s ∈ S and chosen action a ∈ A (i.e., P as (·) = P(·|st = s, at = a)). Ultimately,

u+((r(s) +βV CPT(S, π)− b)+) and u−((r(s) +βV CPT(S, π)− b)−) are random variables representing the

utility of a perceived reward (gains or losses). As in the original formulation of CPT, the weighted survival

functions of the gains and losses (with respective weighting functions w+ and w−) are integrated for all

possible utilities, though in this case the probability measure is distorted with the policy π chosen by the

agent.

Like the original CPT, the CPT-value in MDPs is a generalization of the EUT-value with utility function

u, when ∀p ∈ [0, 1]w+(p) = w−(p) = p and ∀r ∈ Ru+(r) = u−(r) = u(r). For this reason, comparing

V CPT and V EUT is straightforward and meaningful. Part of this thesis consists in extending the

CPT-value to the Markov game setting, so we can understand the behavior of CPT-agents and

compare to that of EUT-agents.

3.3 Intuitive Psychology

There has been a recent push in research into the notion of intuitive theories and how we can take

advantage of these to build agents capable of simulating human intuition [23]. In this thesis, we are

interested in intuitive psychology, a set of theories agents have upon which causal inference can be

done, effectively creating an inference bias that helps behavioral judgements. In multi-agent systems

research, these can be seen as theories of agents modelling other agents (see [48] for a recent compre-

hensive review of autonomous agent modelling papers); agent modelling schemes can be categorized

based on their assumptions and what they are trying to model.

In our case, we will be using the level-k bounded rationality model [26] – a recursive theory of mind

model. There exists experimental evidence that supports the idea that humans have bounded rationality

and that we are rarely in a Nash equilibrium agents [49, 50]. The level-k model has been applied to

domains of more than two agents [51], effectively using theory of mind to the behavior of teams and

their formation. This is a difficult problem that can be easily be seen with a mathematical analogy.

Let Ki be the operator that, when operated on some knowledge X, gives the knowledge that agent i

has about X, that is KiX. Thus, theory of mind reasoning can be done using these operators. For a

given recursion level k, the number of sequences that can be built using n operators Ki, i = 1, ..., n is

n(n − 1)k. For the two agent case, this is a constant number with respect to the recursion level and a

policy hierarchy is relatively easy to build and operate with. However, for n > 2, the number of such

sequences is exponential with respect to the recursion depth, because it includes types of reasoning
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such as “What 1 thinks that 3 thinks about 2’s policy”. Because of this, we will, in this thesis, focus on

studying the coordination between two risk-sensitive agents with theory of mind.

Humans are able to cooperate and coordinate easily due to our evolved intuition [52] and the exis-

tence of cultural norms [53] and signals, such as social cues [54] and explicit communication [55]. Some

of these mechanisms have been studied and implemented, showing that cooperation of machines with

humans and other machines is possible and that, in some cases, it can rival human cooperation using

simple learning rules [56].

A major motivation for this thesis was the work in [1]. In it, a formalism known as Linearly-solvable

Markov Decision Process (LMDP) (a particular type of MDP) is generalized to the two agent setting

and coordination is studied in a scenario similar to the Stag Hunt game. The agents use EUT and are

equipped with a level-k model. They showed coordination increases for increasing sophistication

levels of both agents (i.e., higher levels of k. The LMDP formalism, when extended to the two agent

setting, makes the assumption that agents make repeated decisions in a sequential manner, with

agent 1 playing first, in their case. In this thesis, we use the Markov game framework, a more general

framework5 which is used in learning models [57], to model repeated decisions made in a simultaneous

manner. We would also like to note that the rationale in the level-k model should be different in settings

of simultaneous and sequential decisions, to account for the added information of the agent who has

seen the decision of the other. We will draw inspiration from [1] and study the Markov game version of

their stag hunt analogue.

3.4 Summary of Related Work

In this chapter, we have briefly reviewed the literature on risk-sensitive measures, and provided an expla-

nation to why we use CPT as our theory of value, despite there being some evidence that it may not be

the perfect descriptor of human behavior. We have seen how CPT is applied to normal-form games and

to MDPs in the discounted infinite-horizon case. Based on the reviewed literature, the reader may start

to think that descriptive theories of behavior can be used to obtain prescriptive theories in multi-agent

settings, such as normal-form games and Markov games.

We draw inspiration from [1], in which was shown that coordination increases with increasing so-

phistication levels, when two EUT-agents were equipped with level-k models, and played sequentially

in an LMDP framework. Appendix A provides a brief explanation of their results and further research

concerning the sequential nature of the LMDP and level-k models.

5Markov games generalize MDPs while LMDPs are a particular case of them.
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We will study the coordination of risk-sensitive agents in two settings. First, a normal-form game

of stag hunt will give us some idea about how this paradigmatic example changes when agents value

actions using CPT rather than the usual EUT. Second, we will create a Markov game analogue of the

stag hunt game to gain insight into how two risk-sensitive agents (using CPT to value actions), equipped

with a recursive theory of mind (level-k), coordinate in a stochastic environment, where risk comes not

only from the actions of the other agent but also from the environment itself.

4.1 Normal-form Stag Hunt

We will look at coordination in a particular instance of the game of stag hunt, with rewards defined as

in Table 2.2. We will identify the stochastic Nash equilibrium when both agents calculate the value of

actions with EUT and compare it with the CPT-equilibrium, when both agents calculate the value of

actions with CPT. Since the stag hunt game is a symmetric game (the rewards are similar for both

agents), the optimal policy of agent 1 is equal to the optimal policy of agent 2. The stag hunt game

has only two actions, and therefore, a policy can be fully specified by the probability that agent 1 (or

agent 2) choosing to hunt stag, which we will denote as p = P(Agent 1 plays S). Probability p is then

a full descriptor of the equilibria, which can be obtained for both types of agents. We will refer to this

probability as pEUT and pCPT for the Nash equilibrium and the CPT-equilibrium, respectively, and to the

value under EUT and under CPT as V EUT and V CPT, respectively. Both equilibria can be obtained by

solving these two systems of equations as follows:

V EUT(S, pEUT) = u(5)p+ u(0)(1− p),

V EUT(H, pEUT) = u(1),

V EUT(S, pEUT) = V EUT(H, pEUT), and

(4.1)

V CPT(S, pCPT) = u(5)w(p) + u(0)w(1− p),

V CPT(H, pCPT) = u(1), and

V CPT(S, pCPT) = V CPT(H, pCPT).

(4.2)

In this case, a measure of coordination can be seen as the probability that both agents choose the same

action, P(a1 = S, a2 = S) + P(a1 = H, a2 = H) = p2 + (1 − p)2, which is maximal for p = 0 and p = 1

and minimal for p = 0.5.

It is also worth comparing the expected total reward given by

E[r1(p) + r2(p)|p] = (5 + 5)p2 + 2p(1− p) + (1 + 1)(1− p)2, (4.3)

of both equilibria, pEUT and pCPT, because even when agents coordinate, they may choose a sub-optimal
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way of doing so.

In this model, we considered u(r) = r, w(p) = e−0.5(− log(p))0.9 , and b1 = b2 = 0 to ensure the theories

of value (EUT and CPT) differ only on the perception of probabilities.

4.2 Markov Game with CPT-Value

The CPT-value in an MDP can be recursively calculated with Equation (3.1). Extending this scheme

to a Markov game with n agents with joint action space A = A1 × ... × An (where Ai is the action

space of agent i) in a joint state space S = S1 × ... × Sn (where Si is the state space of agent i) with

stochastic dynamics prescribed by the transition function Pas (·) = P(·|st = s,at = a), (s1, ..., sn) = s ∈

S, (a1, ..., an) = a ∈ A is relatively straightforward. The CPT-value that agent i places on a joint state

(s1, ..., sn) = s ∈ S, given a joint policy π = (πi,π−i) can be obtained via successive iterations of

V πi (s) =

∫ ∞
0

w+
i

 ∑
a∈A(s)

Pas
(
u+i ((ri(s) + βiV

π
i (S)− bi)+) > ε

)
π(a|s)

 dε

−
∫ ∞
0

w−i

 ∑
a∈A(s)

Pas
(
u−i ((ri(s) + βiV

π
i (S)− bi)−) > ε

)
π(a|s)

 dε,

(4.4)

where ri(s) is the reward given to agent i on joint state s, bi is the reference point of agent i, βi is the

discount factor of agent i, u+i and u−i are the utility functions of agent i relative to the gains and losses,

respectively, and w+
i and w−i are the probability weighting functions of agent i relative to the gains and

losses. Each agent i will rationally choose a policy πi that maximizes V πi . To make this clearer, we can

rewrite Equation (4.4) as

V
πi,π−i

i (s) =

∫ ∞
0

w+
i

( ∑
ai∈Ai

P
ai,π−i

i,s,+ (ε)πi(ai|s)

)
dε

−
∫ ∞
0

w−i

( ∑
ai∈Ai

P
ai,π−i

i,s,− (ε)πi(ai|s)

)
dε,

where P ai,π−i

i,s,+ (ε) =
∑

a−i∈A−i(s)

P ai,a−i
s (u+i ((ri(s) + βiV

πi,π−i

i (S)− bi)+ > ε)π−i(a−i|s)

and P ai,π−i

i,s,− (ε) =
∑

a−i∈A−i(s)

P ai,a−i
s (u−i ((ri(s) + βiV

πi,π−i

i (S)− bi)− > ε)π−i(a−i|s).

(4.5)

Each agent i will maximize the functional CPT-value V
πi,π−i

i in every joint state s by choosing the

appropriate policy πi, given the joint policy π−i. Formally, πi = argmax
π′i

V
π′i,π−i

i (s) for each joint state

s ∈ S. Optimizing the improper integrals may at first seem a daunting task. To do so, we capitalize

on the fact that the survival functions are piece-wise constant, effectively letting us rewrite the improper

33



integrals as a finite sum. Let {ε+k }K
+

k=0 and {ε−k }K
−

k=0 be the ordered sets of atoms1 of the survival functions

P
ai,π−i

i,s,+ and P ai,π−i

i,s,− , respectively. Replacing the integrals by sums, Equation (4.5) becomes

V
πi,π−i

i (s) =

K+∑
k=1

w+
i

 ∑
ai∈Ai(s)

P
ai,π−i

i,s,+ (ε+k )πi(ai|s)

 (ε+k − ε
+
k−1)

−
K−∑
k=1

w−i

 ∑
ai∈Ai(s)

P
ai,π−i

i,s,− (ε−k )πi(ai|s)

 (ε−k − ε
−
k−1),

(4.6)

which simplifies the non-linear optimization problem to,

given π−i, u+i , u
−
i , w

+
i , w

−
i , βi, bi, P

ai,a−i
s ,

find πi = argmax
π′i

V
π′i,π−i

i (s),∀s ∈ S,

subject to
∑
ai∈Ai

πi(ai|s) and πi(ai, s) ≥ 0,∀s ∈ S,

(4.7)

which we can solve using Python’s scipy implementation of SLSQP (Sequential Least Squares Quadratic

Programming).

4.2.1 Markov Stag Hunt

We wish to capture the essence of coordination in a setting where time is relevant. To accomplish

this, we will create a Markov game version of the stag hunt in which there are n = 2 agents in the

joint state space S = S1 × S2 (with S1 = S2 = {0, ..., 15}) with joint action space A = A1 × A2 (with

A1 = A2 = {L, S,R}), stochastic dynamics from Figure 4.1 (see Figure 2.4 for a similar, single agent

state diagram) and reward structure from Figure 4.2. Intuitively, this creates a stochastic environment

where two agents, at each time step, choose to move to the left, right or stay in their current state, and

receive the reward of that state.

The similarity to the stag hunt can be found in the reward structure; any agent receives a reward of 1

at state 3 (hunting hares), a reward of 5 is given to the agents only if both are in state 11 (hunting stags),

and all other states gives a reward of 0 (nothing hunted).

To create a simultaneous decision situation, the dynamics in the joint state space and the individual

transition probabilities in Figure 4.1 must be combined in a proper manner, i.e.,

P a1,a2 =
I ⊗ P a1 + P a2 ⊗ I

2
, (4.8)

where the Kronecker product ⊗ ensures an action from agent 1 does not change the state of agent 2

1The atoms in both sets are ordered in an increasing manner, i.e. εk > εk−1∀k.

34



0 3 11 15
Next state (s′)

0

3

11

15

C
ur

re
nt

 s
ta

te
 (s

)

PLeft
s, s′

0 3 11 15
Next state (s′)

PStay
s, s′

0 3 11 15
Next state (s′)

PRight
s, s′

0.0

0.2

0.4

0.6

0.8

1.0

3 11
State of agent 1 (s1)

3

11

St
at

e 
of

 a
ge

nt
 2

 (s
2)

r1(s1, s2)

3 11
State of agent 1 (s1)

r2(s1, s2)

0

1

2

3

4

5

Figure 4.1: The transition matrices of the Markov game,
for the three available actions L, S, and R,
where L stands for going left, S stands for
staying in the same state and R stands for
going right. An agent can move to adjacent
states or remain by choosing one of these
three available actions, but the outcome is
not deterministic, i.e. there is a chance of
failure. For instance, choosing L does not
guarantee that the agent moves to the left
and may end up staying in the same place
or going the opposite direction.

Figure 4.2: The reward functions of both agents. They
are symmetrical like the payoff matrix of the
stag hunt. State 3 gives reward of +1 to an
agent in it regardless of the state of the other
agent, to represent the hares that can be
captured alone but offer little reward. State
11 gives reward of +5 to the two agents if
they are both in state 11. All other states
give a reward of 0.

and vice-versa. The average of this transformed agent transition probability function ensures the joint

state space dynamics is independent of who acts first.

Each agent is equipped with a level-k model, which lets them create increasingly sophisticated poli-

cies π(k1)
1 and π(k2)

2 , where k1 and k2 are the sophistication levels of agent 1 and agent 2, respectively.

To simplify the discussion, we will assume that both agents have similar value functionals. Formally, this

means that u+i = u−i = u, w+
i = w−i = w, βi = β and bi = b for i = 1, 2, such that V1 = V2 = V . With

this assumption we are saying that both hunters value outcomes in the same exact way. Level-k then

dictates that policies of sophistication level k for both agents are obtained via

π
(k)
1 = argmax

π1

V π1,π
(k−1)
2 (s),∀s ∈ S,

π
(k)
2 = argmax

π2

V π
(k−1)
1 ,π2(s),∀s ∈ S,

(4.9)

and we will assume π(0)
1 and π(0)

2 are uniform policies, i.e., policies that choose L,S or R with probability
1
3 , independently of the state.

We will analyze the behavior of both agents as a function of the sophistication order of their policies.

To do so, we will make use of the fact that the Markov Stag Hunt game, when conditioned on a joint

policy π(k1,k2) = (π
(k1)
1 , π

(k2)
2 ), is a time-homogeneous, discrete-time, irreducible Markov chain whose
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states are all positive recurrent with transition function

P
π
(k1)
1 ,π

(k2)
2

s,s′ =
∑
a1∈A1
a2∈A2

P a1,a2s,s′ π
(k1)
1 (a1|s)π(k2)

2 (a2|s),∀s ∈ S. (4.10)

Thus, given π(k1)
1 and π2(k2), there exists a stationary distribution ρ(k1, k2) such that

ρ(k1, k2) = Pπ
(k1)
1 ,π

(k2)
2 ρ(k1, k2). (4.11)

The stationary distribution ρ(k1, k2) allows us to identify in which states the two agents will most likely be

in the long run, regardless of whether the two agents start.

In this model, we considered u(r) = r, w(p) = e−0.5(− log(p))0.9 , and b = 0 to ensure the theories of

value (i.e., EUT and CPT) differ only on the perception of probabilities. Furthermore, we assume both

agents use a discount factor of β = 0.9.
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We evaluate the models defined in the previous chapter. In the first model, we use the stochastic

Nash equilibrium and the CPT-equilibrium to understand how coordination differs when agents are using

EUT and CPT as theories of value. In the second model, we show the effect of increasingly sophisticated

policies of the level-k model on the coordination of EUT- and CPT-agents.

5.1 Normal-form Stag Hunt

Let us assume that utility functions are identical and that the only difference between EUT and CPT is

the way agents perceive likelihoods which are captured by the probabilities of an outcome. If, from the

perspective of one agent, the other agent will choose S with probability p, then the values of his actions,

under EUT and CPT, are given by

V EUT(S) = 5p, V EUT(H) = 1, and

V CPT(S) = 5w(p), V CPT(H) = 1.
(5.1)

For EUT and CPT, the Nash equilibria correspond to the probabilities pEUT and pCPT that make V M(S) =

V M(H) for M ∈ {EUT,CPT}, respectively. Also, we consider w(x) = exp{−0.5(− log(x))0.9}, so we get

pEUT = 0.2 and pCPT ≈ 0.028.

Our results show that CPT-agents in a normal-form stag hunt game choose to coordinate to hunt

hares with higher probability than EUT-agents. Consequently, it readily follows that CPT increases

coordination in the stag hunt game, since both agents choose the same action more often. In other

words, whereas two hunters hunting a stag yields the largest reward, the risk of hunting a stag alone is

overshadowed by the safety of hunting a hare.

While hunting hares is sub-optimal, the average sum of rewards does not decrease substantially

from the EUT-agents, i.e.,

Ea1,a2 [rEUT
1 (a1, a2) + rEUT

2 (a1, a2)] = 2, and

Ea1,a2 [rCPT
1 (a1, a2) + rCPT

2 (a1, a2)] ≈ 1.95.
(5.2)

This is because an increase in coordination reduces the likelihood of either hunter choosing to hunt stags

alone and, consequently, getting a reward of zero. This suggests that CPT-agents are more risk-averse

(in a one-shot setting) than EUT-agents, a feature also seen in humans.

5.2 Markov Stag Hunt

The conflict between short- and long-term rewards is of particular interest in domains where time is a

relevant factor, and it is also in these domains where a theory of mind may prove useful. To that end,
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we studied how EUT- and CPT-agents coordinate in a Markov game version of stag hunt inspired by [1],

where both types of agents were equipped with a level-k theory of mind. Hence, predicting several

(increasingly sophisticated) behaviors in the form of policies.

The Markov stag hunt game policies – resulting from the optimization problem in Equation (4.7) –

can be found in Figure 5.1. There are clear differences between the policies of EUT- and CPT-agents.

A good summary of the differences in behavior can be seen by looking at the probability of staying (i.e.,

choosing S, corresponding to the second and fifth columns of Figure 5.1) – the size of the rightmost

green bar indicates the attractiveness of staying at the stag state, which is much larger for CPT agents

than it is for EUT agents.
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Figure 5.1: Resulting EUT and CPT policies of agent 1 as functions of the agent states, for sophistication levels
k = 1, 2, 3, 4. Due to the symmetry of the game, the policies for agent 2 are the transpose of these
policies.

The results in Figure 5.2 shows that both EUT- and CPT-agents place increasingly more value on

the stag state but the latter place substantially more value on the stag state – even in the lowest sophis-

tication levels (i.e., low values of k).

Stationary distributions allow us to easily compare dynamics of EUT- and CPT-agents. Specifically,
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Figure 5.2: EUT- and CPT-values as functions of the
agent states, s1 and s2, for sophistica-
tion levels k = 1, 2, 3, 4. We assumed ref-
erence points b1 = b2 = 0, discount factors
β1 = β2 = 0.9, utility function u(x) = x and
weighting function w(x) = x for EUT and
w(x) = e−0.5(− log(x))0.9 for CPT

Figure 5.3: Stationary distributions of the resulting
Markov chains obtained by conditioning
the Markov game to increasingly sophis-
ticated policies, k = 1, 2, 3, 4, for EUT-
and CPT-agents. We assumed refer-
ence points b1 = b2 = 0, discount factors
β1 = β2 = 0.9, utility function u(x) = x and
weighting function w(x) = x for EUT and
w(x) = e−0.5(− log(x))0.9 for CPT.
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Figure 5.4: Stationary distributions of the resulting Markov chains obtained by conditioning the Markov game to
increasingly sophisticated policies, k = 1, 2, 3 and 4, for EUT-agents and CPT-agents. We assumed
reference points b1 = b2 = 0, utility function u(x) = x and weighting function w(x) = x for EUT and
w(x) = e−0.5(− log(x))0.9 for CPT. (Left) Stationary distribution for EUT- and CPT-agents using discount
factor β = 0.85. (Right) Stationary distribution for EUT- and CPT-agents using discount factor β = 0.85.

from Figure 5.3, we have that while both EUT- and CPT-agents eventually prefer state 11 (hunting stags)

with increasing sophistication levels, CPT-agents dramatically do so. In fact, CPT-agents have a strict

preference for the stag state even for sophistication level k = 1, where both agents assume the other is

using a random policy.

These results suggest that, with increasing k (the sophistication level of policies), CPT-agents

coordinate better and choose the optimal stag state, whereas EUT-agents fail to do so.

To analyze the robustness to parametric choices in our setting, we further studied the sensitivity of

the coordination to the parameters of the model. We specifically looked at the discount factor β and the

reference point b. Figure 5.4 provides evidence that increasing the discount factor (thus increasing the

perceived “goodness” of long-term rewards) also increases coordination of both EUT- and CPT-agents,

and that the latter still generate more coordination than EUT.

Additionally, we have considered different sophistication levels and reference points. This analysis is

captured in Figure 5.5, where we show the stationary distribution of CPT-agents for different sophistica-

tion levels and reference points. It readily follows that higher reference points decrease coordination. In

other words, hunting stags is perceived as a not-so-good solution when agents have a negative skewed
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Figure 5.5: Stationary distributions of the resulting Markov chains obtained by conditioning the Markov game to
increasingly sophisticated policies, k = 1, 2, 3 and 4, for CPT-agents with several reference points
b = −1, 0, 1, 2. We assumed discount factors β1 = β2 = 0.9, utility function u(x) = x and weighting
function w(x) = e−0.5(− log(x))0.9 .

view of the rewards. Notice that CPT-agents with a higher reference point have a more bleak perception

of rewards.

5.3 Limitations

Unfortunately, obtaining the solution to the optimization problem defined in Equation 4.7 is often a daunt-

ing task as the numerical approaches suffer from (well known) instability issues for some initial config-

urations. Consequently, when this occurred, a different but valid initial configuration was selected at

random until convergence.

Additionally, the weighting function w(x) = e−0.5(− log(x))0.9 is both computationally expensive and

its implementation has to be truncated as x→ 0. Therefore, a posynomial approximation w(x) =

0.00231x0.05 + 0.00128x0.1 + 0.19578x0.35 + 0.59897x0.4 + 0.15968x0.95 + 0.03318x3 + 0.00847x23 was

used, similar to [58].

The reader should also be made aware that the optimization algorithm itself is slow and relatively

unstable to some parameter configurations, and therefore, theoretical work on techniques regarding

CPT value optimization would prove useful and allow us to readily study agent-based systems with
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more than two agents and at more extreme parameter configurations.

43



44



6
Conclusion

Contents

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

45



In Chapter 1, we defined two research questions:

• Q1 - Can cognitive biases concerning risk promote coordination?

• Q2 - Can increasingly sophisticated levels of theory of mind promote coordination?

In this last chapter, we provide answers to these questions based on the results and discussion in the

previous chapters and provide the reader with possible future investigations based on this work.

6.1 Summary

In this thesis, a brief introduction to expected utility theory (EUT), cumulative prospect theory (CPT) and

level-k bounded rationality considered in the theory of mind was presented and we stated the relevance

of using behavioral models in domains where agents mimic human decisions.

To seek the answer to Q1, we studied the normal-form stag hunt game with agents measuring value

using CPT and compared the results with agents measuring value using EUT. Our results suggest

CPT-agents in a normal-form stag hunt game coordinate by choosing to hunt hares with higher

probability than EUT-agents. While hunting hares is sub-optimal, the total reward does not decrease

substantially from the behavior of the EUT-agents because the probability of hunting stags alone also

decreases. This further suggests the risk aversion of human-like agents in a one-shot setting.

However, the conflict between short- and long-term rewards is of particular interest in domains where

time is a relevant factor, and it is also in these domains where a theory of mind may prove useful. To

answer Q2, we studied how EUT- and CPT-agents coordinate in a Markov game version of stag hunt

inspired by [1], where both types of agents were equipped with a level-k theory of mind model, that

predicts several, increasingly sophisticated behaviors, in the form of policies. Our results suggest that,

with increasing k (the sophistication of policies), CPT-agents coordinate faster and choose the

optimal stag state, whereas EUT-agents fail to do so.

This is a remarkable finding, suggesting that the use of homo economicus in multi-agent systems

(MAS) may be ruling out on these naturally occurring coordinating behaviors due to their focus on opti-

mality. In fact, most MAS applications use EUT due to the parsimonious mathematical model it provides.

Therefore, a shift toward more human-like behavior models may prove useful in this setting.

Cognitive biases and theory of mind are a fundamental part of being human. We have shown that,

by including cognitive biases and theory of mind in the dynamics of a coordination game, agents are

able to coordinate much more easily.

Furthermore, increasingly sophisticated policies in the context of bounded rationality (i.e.,

increasing value of level-k theory of mind) help coordination between both EUT- and CPT-agents.

Additionally, we also provided evidence that higher sophistication levels (i.e., higher than k = 3) do not
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seem to change the outcome of the two agent setting in the long run. Thus, this latter provides more

evidence that unbounded rationality is not only practically unfeasible, but also unnecessary for

coordination.

Also, we have shown how the consideration of long-term rewards over short-term ones affects the

coordination of EUT- and CPT-agents. Specifically, for lower values of the discount factor β, agents will

increasingly prefer short-term rewards over long-term rewards. Besides, we have shown that preferring

short-term rewards inhibits the coordination of both EUT- and CPT-agents, while the opposite

promotes coordination. Furthermore, we remarkably observed that more sophisticated policies in

the theory of mind help agents coordinate, even if the long-term reward consideration makes it

unlikely at first.

Lastly, we looked at the sensitivity of the coordination to the reference points of the agents. In

particular, we have observed that higher reference points decrease coordination, which suggests

that the framing of gains and losses plays an important role in the emergence of human coordination.

6.2 Suggestions for Future Work

As we have shown, behavioral agent models provide significantly different system dynamics compared

to prescriptive agent models, and therefore, several interesting research directions naturally arise. For

instance, multi-agent systems where agents represent people should use a descriptive behavioral model

instead of a prescriptive model. Upon realizing this, one can start to develop and study human-based

models such as idealized forms of democracy (e.g., liquid democracy [59]), video-game artificial intelli-

gence with human-like behavior (or that is able to understand human-like behavior) and policy-making,

or even revisiting already known conflict problems such as the tragedy of the commons and the diffusion

of responsibility.

It would also prove interesting to create an inference model to obtain the optimal parameters of this

model, similar to [1]. For instance, a Bayesian method to infer the reference point, discount factor, utility

and weighting function parameters, and policy sophistication level would enable machines to learn to act

in a more personalized manner.

One caveat of the bounded rationality using a level-k model is the assumption that stereotype policies

are uniform, which may be rather unrealistic. Therefore, a way of creating more realistic stereotyped

policies would be an interesting problem to tackle. One such way is self-play, a reinforcement learning

method to train agents by pitting them against themselves and, in an evolutionary manner, preserving

winners and discarding losers [60].

In the two-agent level-k model, it is known that humans, in general, do not use more sophistication

than level-3 [49]. This creates a finite hypothesis space for the policy levels (i.e., with k = 0, 1, 2, and 3).
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However, when multiple interacting agents are a part of the environment, it is not enough to specify policy

levels as a single number because each agent may have a policy which is a best response against

several other policies of different levels. Therefore, there exists a problem of finding a behaviorally

plausible hypothesis space for the inferred orders of each agent, which, if solved, would allow inference

to be done on a collective level. Specifically, we would like reasoning such as “what you think about what

he things that she thinks...” to be described in a simple, yet well-structured manner. The team theory of

mind model proposed in [51] is an interesting setting that tackles some of the problems but its solution

is computationally costly. At last but not least, experimental verification of the proposed framework

could be done via a sociological study, which may also generate interesting data to further validate and

expand the proposed model. These and other related research paths may lead to new knowledge of the

dynamics of systems comprised of people and, in turn, unlock the knowledge we lack to build artificial

entities capable of understanding and simulating human behavior.

6.3 Implications

The field of affective computing has become increasingly important to businesses and governments

due to the unique ability to use emotional and social intelligence to inform decision-making, tapping

into a hidden realm of signals previously only accessible to humans. It was the purpose of this thesis

to contribute to this and peripheral fields of research, by studying the effects of cognitive biases and

mechanisms such as risk perception and theory of mind on the ability to coordinate.

In important areas of industry, governments and education, machines use cognitive intelligence to

solve difficult problems and replace us in time-consuming tasks such as patient diagnosis in health-

care, fraud detection in the financial sector, efficient and automatic anomaly detection in manufacturing,

inventory optimization in retail, personalized smarter services in government, demand forecasting in

transportation systems like Uber and Lyft, intrusion detection in IT networks and recommender systems

in e-commerce platforms such as Amazon.

Machines capable of emotional and social intelligence have applications to these same fields, but

solve problems in which the human element is present. In military applications machines can replace

army recruiters by interviewing and selecting human candidates based on emotional cues and more so-

phisticated machines can psychologically train soldiers before entering a war zone. In stores, machines

should automatically identify unhappy shoppers with facial recognition to trigger remedial actions and

eventually deal with customer complaints and address concerns of unhappy customers. Current prac-

tical applications could also be improved. Recommendation systems using affective data could allow

Spotify to recommend music and Netflix to recommend movies based on your current emotional state.

The main conclusion of this thesis is that, as a consequence of the two conducted experi-
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ments, both settings suggest that the reason why humans are good at coordination may stem

from the fact that we are cognitively biased to do so. For this reason, machine agents ought to be

built to incorporate the cognitive biases of humans if we are to, one day, live among them.
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A
Analysis of Game Theory of Mind

This thesis was motivated by a paper called Game Theory of Mind [1]. In this appendix we provide

an introduction to the Game Theory of Mind paper and analyze how a sequential version of the level-k

model changes the behavior of the agents, something which was not tackled in the original work.

A.1 Description

The Game Theory of Mind paper analyzes the behavior of EUT-agents equipped with level-k, in a setting

similar to the second experimental setup in this thesis (see Chapter 4). They make use of a modified

LMDP to model the behavior of two agents in the same state space (S1 = S2 = S = {0, ..., 15}) and with

a similar reward structure to the Markov Stag Hunt game1.

The LMDP framework is a special case of the MDP, where a single agent is not presented with

a discrete set of actions but is instead presented with some uncontrolled dynamics prescribed by a

probability function P̄ which can be continuously deformed by assigning to each state in the state space

1The reward function is presented as a heatmap plot with no color bar and therefore it was not possible to reproduce the results
of the paper with absolute precision.
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S a value such that the controlled dynamics is prescribed by a probability function of the form:

P (v)ij =
P̄ije

λv(i)∑
k∈S P̄kje

λv(k)
, (A.1)

where P (v)ij is the controlled probability of going from state j to state i using value v ∈ R|S|, P̄ij is the

uncontrolled probability of going from state j to state i, and λ ∈ [0,∞).2 The reward function r ∈ R|S|

represents the motivation of the agent. The agent wishes to maximize the following sum of rewards over

an infinite time horizon3:

v = EP (v)

[ ∞∑
t=0

rt

]
. (A.2)

This formulation resembles a form of game-theoretical equilibrium called the Quantal Response Equi-

librium (QRE) [61]4, a stochastic version of the Nash equilibrium where agents perceive expected utilities

with some random noise. Since agents maximize the perceived expected utilities under this model, the

QRE policies are stochastic. An interesting feature of the QRE is that as λ → ∞, the QRE tends to the

Nash equilibrium in a normal-form game. In other words, as the temperature goes to absolute zero, the

agents become rational.
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Figure A.1: An illustration of the QRE (black line) in the Stag Hunt game in Table 2.2, as a function of λ. Calculating
QREs often involves solving a transcendental equation, which, in this case, we bypass by plotting a
surrogate function and observing its zeros.

2Those familiar with thermodynamics will recognize this as the Boltzmann distribution. In other words, this deformation creates a
stochastic model akin to a thermodynamics system, where the value plays the role of an energy and λ is related to the temperature
of a thermal reservoir in a canonical ensemble.

3This formulation of value is only possible if the infinite sum is finite, by, for example, assuming that there exists a zero-reward
absorbing state or using a discount factor. The original paper does not make any such assumptions and as such, the value does
diverge.

4The QRE has also been generalized to the extensive-form game setting in [62].
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To obtain the optimal value, we can use the following iterative scheme5 [63,64]:

vt+1 = r + vtP (vt). (A.3)

The LMDP was extended to the two-agent scenario, in the [1]. They accomplish this by assuming that

each agent takes turns in a fixed manner, with agent 1 being the first to play. The controlled dynamics

P (v1,v2) is defined over the Cartesian product S = S1 × S2 and now depends on the value of both

agents, v1 and v2 and can be written as a function of the controlled probability matrices of both agents

as P (v1,v2) = P2(v2)P1(v1), with:

P1(v1)ij =
Π1,ije

λv1(i)∑
k∈S Π1,kjeλv1(k)

,

P2(v2)ij =
Π2,ije

λv2(i)∑
k∈S Π2,kjeλv2(k)

,

Π1 = I⊗ P̄1,

Π2 = P̄2 ⊗ I,

(A.4)

where Π1 and Π2 represent the uncontrolled transitions of each agent in the joint state space, given

the uncontrolled transitions P̄1 and P̄2. The Kronecker product ⊗ ensures the transitions of one agent

cannot alter the state of the other agent. Each agent has its own reward function, r1 and r2, and it is

assumed they are both attempting to maximize the expected sum of rewards, like so:

v1 = EP (v1,v2)

[ ∞∑
t=0

r1,t

]
,

v2 = EP (v1,v2)

[ ∞∑
t=0

r2,t

]
,

(A.5)

which each agent can solve in the same manner as the single agent case, given the value vector of the

other agent.

A.2 Sequential versus Simultaneous Model

The main difference between the Markov game and the two-agent LMDP is that, in the latter, both agents

act in a sequential manner, with agent 1 being the first to play.

The original formulation implements a level-k model by considering the following hierarchy of value

5Since it is the relative value between states that is important, the value vector can be normalized by subtracting the maximum
of the vector to each entry in order to ensure the.
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functions:

v
(1)
1 = r1 + v

(1)
1 P (v

(1)
1 ,0),

v
(1)
2 = r2 + v

(1)
2 P (0,v

(1)
2 ),

...

v
(k)
1 = r1 + v

(k)
1 P (v

(k)
1 ,v

(k−1)
2 ),

v
(k)
2 = r2 + v

(k)
2 P (v

(k−1)
1 ,v

(k)
2 ).

(A.6)

This assumes that both agents are equal in every regard. In fact, in the original formulation, the resulting

value functions of one agent in the LMDP Stag Hunt game is the transpose of the value functions of the

other agent. But this cannot be since the game is inherently sequential and therefore, since agent 2 is

the second to play, he should have more information than agent 1.

A repetition of the results for the level-k model implemented in a simultaneous manner, like the origi-

nal version, can be found in Appendix A.2. The dissimilarity between the value functions for both agents

for a given sophistication level is indeed not just the transpose. The resulting stationary distributions,

however, still show the switch from the hare state (state 3) to the stag state (state 11).

We investigated a sequential implementation of the level-k model by considering the following hier-

archy of value functions:

v
(1)
1 = r1 + v

(1)
1 P (v

(1)
1 ,0),

v
(1)
2 = r2 + v

(1)
2 P (v

(1)
1 ,v

(1)
2 ),

...

v
(k)
1 = r1 + v

(k)
1 P (v

(k)
1 ,v

(k−1)
2 ),

v
(k)
2 = r2 + v

(k)
2 P (v

(k)
1 ,v

(k)
2 ).

(A.7)

There is now a clear asymmetry in the level-k model, on top of the sequential nature of the two-agent

LMDP. The resulting value functions and stationary distributions are displayed in Appendix A.2. With

this level-k scheme, the agents are, unsurprisingly, faster at coordinating their efforts to hunt stags, due

to the added information of agent 2.
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Figure A.2: Results of the simultaneous level-k in [1]. (Left) Value function of agent 1. (Middle) Value function of
agent 2. (Right) Stationary distribution of agents. Each row corresponds to the results of a particular
level k = 1, 2, 3, 4.
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Figure A.3: Results of the proposed sequential level-k. (Left) Value function of agent 1. (Middle) Value function of
agent 2. (Right) Stationary distribution of agents. Each row corresponds to the results of a particular
level k = 1, 2, 3, 4.

62



B
Dynamic Programming

Dynamic programming is a recursive “divide and conquer” method for solving problems. In essence, it

breaks down a difficult problem into smaller, easier to solve problems. Here, we provide an introduction

to dynamic programming in the context of games.

B.1 Backwards Induction in the Centipede Game

In game theory, the class of games called extensive-form games (sometimes also called dynamic

games) tries to model interactions between agents over time, in a deterministic fashion. Repeated

games are a special case of these, wherein a normal-form game is played repeatedly. In an extensive-

form game, there may be several normal-form games that can be played depending on the outcomes of

previously played normal-form games – in a sort of tree-like structure of normal-form games.

While we will not formally define extensive-form games, since it is not the purpose of this appendix,

we will use an example of one, the centipede game. In the centipede game, two agents take turns to

decide whether to continue or to stop the whole game. By continuing, both agents can increase their

potential reward, but the game must either reach the end of the steps or one agent must stop the game
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themselves for those rewards to be obtained.

Figure B.1: The tree diagram of the centipede game, an example of an extensive-form game. The name of the
game stems from the first appearance where n = 100 steps.

Like any game, both agents with to maximize their reward. The usual concept of an equilibrium in

extensive-form games is the subgame perfect equilibrium, a refinement of the Nash equilibrium.

Definition B.1 (Subgame Perfect Equilibrium). In an extensive-form game, a joint policy π is a subgame

perfect equilibrium if, for each normal-form game in the extensive-form game, the local joint policy is a

Nash equilibrium.

Backward induction can be used to obtain subgame perfect equilibria by reasoning backward in

time, from the end of the game to the very start. In the case of the centipede game with n steps, the last

agent that plays chooses between continuing C, yielding a reward of 2n+ 1, and stopping S, yielding a

reward of 2n + 2. Being a rational agent (i.e. wishes to maximize his reward), he will choose S, since

2n + 2 > 2n + 1. The second-to-last agent will then either choose to stop S, yielding a reward of 2n, or

continue C, yielding whatever the next agent will choose. Since we have determined that the last agent

will rationally choose S, then the second-to-last agent will only receive 2n− 1 if he chooses to continue

C. Therefore, the second-to-last agent will choose to stop S, since 2n > 2n − 1. This whole reasoning

process can be repeated until the very start of the game, effectively prescribing a joint policy of the two

agents whereby they both choose to stop S at every step1.

B.2 Dynamic Programming in Markov Decision Processes

Backward induction is a dynamic programming method to determine policies. Another instance of dy-

namic programming can be found in the determination of value in MDPs (see Definition 2.10). Consider

the MDP (S,A, P, r), where S is the state space, A is the action space, P : S × A × S → [0, 1] is the

transition probability function, and r : S → R is the reward function. Equation (2.10) represents the

infinite-horizon discounted expected sum of rewards value functional that the agent wishes to maximize

(with discount factor β ∈ (0, 1)). The determination of this value, for a given policy, is done using dynamic

programming by rearranging the equation so that it is the sum of the reward at the current state plus the

1This result, studied in depth in [65], largely deviates from experimental data [66]
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value of the next state which is a random variable:

V (s, π) = Est+1∼p(·|st,π(st))

[ ∞∑
t=0

βtr(st)

∣∣∣∣∣s0 = s

]

= Est+1∼p(·|st,π(st))

[
r(s0) +

∞∑
t=1

βtr(st)

∣∣∣∣∣s0 = s

]

= r(s) + Est+1∼p(·|st,π(st))

[ ∞∑
t=1

βtr(st)

∣∣∣∣∣s0 = s

]

= r(s) + β
∑
s′∈S

Est+1∼p(·|st,π(st))

[ ∞∑
t=1

βt−1r(st)

∣∣∣∣∣s1 = s′

]
p(s′|s0, π(s0))

= r(s) + β
∑
s′∈S

V (s′, π)p(s′|s, π(s)).

(B.1)

This is again showing the essence of dynamic programming, the breaking down of a problem by finding

a recursive method that we can solve. The optimal value V ∗(s), for every state s ∈ S, is obtained by the

following maximization:

V ∗(s) = max
π

{
r(s, π(s)) + β

∑
s′∈S

V (s′, π)p(s′|s, π(s))

}
. (B.2)

One, rather simple algorithm to calculate the optimal value is value iteration. It consists in iterating

the following recursion:

Vk+1(s) = T Vk(s) = max
a

{
r(s) + β

∑
s′∈S

Vk(s′)p(s′|s, a)

}
, for all s ∈ S, (B.3)

where V0(s), for all s ∈ S, is an initial guess of the optimal value function, usually taken to be zero, and T

is the evolution operator. In this case, the policies are deterministic and the maximization is made over

the action space A and not the space of possible policies.

Theorem B.1. Value iteration converges to a unique value V ∗.

Proof. Let us first rewrite Equation (B.3) in vector form, T Vk = max
a
{R+ βP aVk}, with [P a]i,j = P (s′ =

j|s = i, a). Value iteration converges if limk→∞ ||Vk − V ∗||∞ = 0. This can be proven by first showing

that the evolution operator T is a contraction mapping on the metric space (R|S|, || · ||∞), i.e. that there

exists a non-negative real number c ∈ [0, 1) such that, for all value vectors V, V ′ ∈ R|S|,

||T V ′ − T V ||∞ ≤ c||V ′ − V ||∞.
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This can be proven as follows:

||T V ′ − T V ||∞ = ||max
a
{R+ βP aV ′} −max

a
{R+ βP aV } ||∞ (by definition)

= ||βmax
a
{P a} (V ′ − V )||∞ (simplification)

≤ β||max
a
{P a} ||∞||V ′ − V ||∞ (||AB|| ≤ ||A||||B||)

≤ β||V ′ − V ||∞ (max
a

∑
s′∈S

P as,s′ = 1).

(B.4)

Since β ∈ (0, 1), then T is indeed a contraction mapping on (R|S|, || · ||∞). Now, with the previous

inequality, and the fact that T V ∗ = V ∗, we can show that the limit is zero:

||Vk − V ∗||∞ = ||T Vk−1 − T V ∗||∞

≤ β||Vk−1 − V ∗||∞

≤ βk||V0 − V ∗||∞

(B.5)

Since ||Vk − V ∗||∞ ≤ βk||V0 − V ∗||∞, and β ∈ (0, 1), then ||Vk − V ∗||∞
k→∞−−−−→ 0.
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